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@ Why Are Graphs Interesting?
© Pre-neural net models

© Graph Convolutional Networks
@ Drug Design with GCNs




Graphs in [Bio/chem]informatics

@ Many ‘biological’ objects are naturally structured.
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Using graphs in ML models

@ Representation Problem
e Standard predictors require fixed-size vectors as input (i.e. feature
vectors)
e Graphs (or subgraphs) are variable in size
e We often lack a notion of explicit ‘features’ that captures structure

@ Solutions

e Implicit — Graph Kernels
o Explicit — Dissimilarity Embedding
o Learned — Graph Convolutional Networks



Graph Kernels

@ Kernel-based predictors work without explicit feature maps.

@ Instead of explicitly defining features, we define a similarity (kernel)
function over graphs [Vishwanathan et al., 2010]

k(G,G') = (¢(G), ¢(G")) (1)

@ All requirements of kernels apply



Neighbourhood Overlap

e Compare neighbourhoods between nodes [Heyne et al., 2012]
@ Used to identify clusters of sub-structures in RNA 2D structures.

@ Decomposition Kernels: graph kernel k function of kernel x on
sub-graphs.

@ r checks isomorphism between pairs of subgraphs in G and G’, k
aggregates.

krd(G,G) =Y 1(A= A)I(B=B')

K(G,G)=> > r4(GG) |
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Dissimilarity Embedding

@ A graph is represented by its distance to a fixed set of graphs
[Riesen and Bunke, 2010]

@ Given a graph distance function d and a fixed set of data points P,
we get a vector representation ¢(g) € RIPl of g as ¢(g); = d(g, P))
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Graph Convolutional Networks (GCN)

Goal: a vector representation of nodes and graphs.
o Idea: let the input graph(s) define the neural network architecture.
@ The representation of a node depends on the representations of its
neighbors.
@ 'Convolutonal’ because we apply the same transformation to all
neighbourhoods followed by pooling.
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Figure: Schematic of neighbourhood aggregation.[Hamilton et al., 2017b]
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Interesting biological applications

@ Convolutional networks on graphs for learning molecular fingerprints
[Duvenaud et al., 2015]

@ Towards gene expression convolutions using gene interaction graphs.
[Dutil et al., 2018]

@ Protein interface prediction using graph convolutional networks
[Fout et al., 2017]
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Figure: GCN model from [Fout et al., 2017] for predicting interface residues in
PPIs. 0/28



Message Passing Framework

Gilmer et.al. [Gilmer et al., 2017] define a general framework for
describing the many proposed architectures.

Node information — message

Transform messages from neighbors to compute hidden
representation.

Use hidden representations to make predictions.

Two phases: (1) Message Passing, (2) Readout
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Message Passing (1)

e Att=0 ml=x, forallveG
@ Sum over function M; applied to each neighbor and self.

o Compute message m;1

t+1 Z Mf(hvv w7eVW) (4)

weN(v)
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Message Passing (2)

@ Once we have our aggregated messages, we can apply U; to get
hidden states.

hytt = Ue(h, m™) (5)

@ U; takes message and current hidden state and transforms to obtain
hidden state at next layer.

@ At ever t messages from neighbours at 1 more 'hop’ are incorporated.
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Finally, we get a graph representation.

y=R({h]|v e G}) (6)
R operates on all nodes to produce final representation y

e.g. R is the average over all h,

Since My, U;, R are differentiable losses can be backpropagated.

Can optionally train directly on h, for node-level tasks.
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Example: Molecular Fingerprints [Duvenaud et al., 20

@ Fingerprints are fixed-size vector representations of chemicals.
@ GCNs ‘invented' to produce smooth/continuous distribution of
fingerprints.

Algorithm 2 Neural graph fingerprints
1: Input: molecule, radius R, hidden weights

H}...H}, output weights W1 ... Wg
2: Initialize: fingerprint vector f < Og
3: for each atom ¢ in molecule
b 4 1y 4+ gla) > lookup atom features

5: for L=1t0o R > for each layer
6:  for each atom a in molecule

7: ry...ry = neighbors(a)

8: VT, T > sum
9: r, + o(vH})) > smooth function
10: i + softmax(r, W) > sparsify
11: fef+i > add to fingerprint

12: Return: real-valued vector f

o M, = CONCAT (hy, hw, €)
o U; = o(H;mitt)
o R = FullyConnected(3_, , SOFTMAX(W;h}))



Latent Molecular Optimization for Targeted Therapeutic

Design [Aumentado-Armstrong, 2018]

@ Problem: given a target find the drug (compound) most likely to
bind and have desired properties.

@ Brute force: Try all compounds for a target: — 1
compounds [Ertl, 2003].

@ Idea: Use GCNs to encode target and ligand structure and predict
compounds with desirable properties.

o Related approach [Mallet et al., 2019]

0%* possible
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e Training input: protein(Gp)/ligand (Sc)complex
@ P is a vector embedding of a protein graph using fg which is a GCN

e C is an embedding of the compound using string encoder f;

Given P we predict a compound C(P)
Given P and C we predict B(C, P) binding strength
e Given C we predict L(C) toxicity, and drug-likeness ¢(C)
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Binding Site Representation

@ Nodes are atoms, edges are inter-atomic interactions weighted by
distance

@ Compute hidden states for each node in matrix.

° h‘(,o) is vector of node features.

e Message function: M;(h%, ht) = (deg(v)deg(w))_%AVW
e Update function: U;(ht, mtt1l) = ReLU(W!mit?)

@ Readout: R = FullyConnected(}_, , SOFTMAX(Wth‘E))
@ The result is a vector representation of the protein
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Affinity Prediction

@ Use DrugScoreX (DSX) scoring function to ‘label’ Protein-Ligand
Complexes (PLCs) with a binding strength.

@ Predict the strenth of binding and the probability of binding from C
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@ Not shown: they are also able to predict toxicity and synthetic
accessibility.
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Latent Space Optimization

@ Once the model is trained, we can explore the latent space to improve
the predicted compound directly C = fs(P).

@ For a fixed target protein P, and variable compound C we define an
energy function Ep.

&p(C) = Eg(C, P) + Ep(C) (7)

@ The energy function is a tradeoff between binding strength Eg(C, P)
and desired chemical properties Ep(C)

Algorithm 1 Molecular Optimization

1: procedure LATENTOPT(P, T, 1)
Co = fs(P)

3 fort =1to T do

4 v VSP(Ct,]_)

5: Cg — ADAM(Ct_l,n,'U)
6: end for
7

8:

Vir }—» VER(C) \

return Cr
end procedure

t>0
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Optimization Results
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Figure: Improvement of compound after optimization process.
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Figure: Left: predicted compound C = f(P), middle: optimized compound, right:
true ligand. Bottom: DSX scores from docking optimized vs random compounds.
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© Graphs are very useful in biology

@ Kernel methods were first attempt at learning on graphs but require
manual construction which can lead to bias.

© Continuous representations are improving and they allow for very
efficient explorations of structured spaces.
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Further Reading

@ GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural
Networks [Ying et al., 2019]

e How powerful are Graph Neural Networks [Xu et al., 2018]

@ Inductive representation learning on large graphs
[Hamilton et al., 2017a]

@ DEFactor: Differentiable Edge Factorization-based Probabilistic
Graph Generation. [Assouel et al., 2018]
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