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Graphs in [Bio/chem]informatics

1 Many ‘biological’ objects are naturally structured.
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Using graphs in ML models

Representation Problem

Standard predictors require fixed-size vectors as input (i.e. feature
vectors)
Graphs (or subgraphs) are variable in size
We often lack a notion of explicit ‘features’ that captures structure

Solutions

Implicit → Graph Kernels
Explicit → Dissimilarity Embedding
Learned → Graph Convolutional Networks
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Graph Kernels

Kernel-based predictors work without explicit feature maps.

Instead of explicitly defining features, we define a similarity (kernel)
function over graphs [Vishwanathan et al., 2010]

k(G ,G ′) = 〈φ(G ), φ(G ′)〉 (1)

All requirements of kernels apply

5 / 28



Neighbourhood Overlap

Compare neighbourhoods between nodes [Heyne et al., 2012]

Used to identify clusters of sub-structures in RNA 2D structures.

Decomposition Kernels: graph kernel k function of kernel κ on
sub-graphs.

κ checks isomorphism between pairs of subgraphs in G and G ′, k
aggregates.

κr ,d(G ,G ′) =
∑

1(A ∼= A′)1(B ∼= B ′) (2)

K (G ,G ′) =
∑
r

∑
d

κr ,d(G ,G ′) (3)
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Dissimilarity Embedding

A graph is represented by its distance to a fixed set of graphs
[Riesen and Bunke, 2010]
Given a graph distance function d and a fixed set of data points P,
we get a vector representation φ(g) ∈ R|P| of g as φ(g)i = d(g ,Pi )
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Graph Convolutional Networks (GCN)

Goal: a vector representation of nodes and graphs.

Idea: let the input graph(s) define the neural network architecture.
The representation of a node depends on the representations of its
neighbors.
‘Convolutonal‘ because we apply the same transformation to all
neighbourhoods followed by pooling.

Figure: Schematic of neighbourhood aggregation.[Hamilton et al., 2017b]
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Interesting biological applications

Convolutional networks on graphs for learning molecular fingerprints
[Duvenaud et al., 2015]
Towards gene expression convolutions using gene interaction graphs.
[Dutil et al., 2018]
Protein interface prediction using graph convolutional networks
[Fout et al., 2017]

Figure: GCN model from [Fout et al., 2017] for predicting interface residues in
PPIs. 9 / 28



Message Passing Framework

Gilmer et.al. [Gilmer et al., 2017] define a general framework for
describing the many proposed architectures.

Node information → message

Transform messages from neighbors to compute hidden
representation.

Use hidden representations to make predictions.

Two phases: (1) Message Passing, (2) Readout
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Message Passing (1)

At t = 0, mt
v = xv for all v ∈ G

Sum over function Mt applied to each neighbor and self.

Compute message mt+1

mt+1
v =

∑
w∈N (v)

Mt(h
t
v , h

t
w , evw ) (4)
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Message Passing (2)

Once we have our aggregated messages, we can apply Ut to get
hidden states.

ht+1
v = Ut(h

t
v ,m

t+1
v ) (5)

Ut takes message and current hidden state and transforms to obtain
hidden state at next layer.

At ever t messages from neighbours at 1 more ‘hop’ are incorporated.
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Readout

Finally, we get a graph representation.

ŷ = R({hTv |v ∈ G}) (6)

R operates on all nodes to produce final representation ŷ

e.g. R is the average over all hv

Since Mt , Ut , R are differentiable losses can be backpropagated.

Can optionally train directly on hv for node-level tasks.

13 / 28



Example: Molecular Fingerprints [Duvenaud et al., 2015]

Fingerprints are fixed-size vector representations of chemicals.

GCNs ‘invented‘ to produce smooth/continuous distribution of
fingerprints.

Mt = CONCAT (hv , hw , evw )

Ut = σ(Htm
t+1
v )

R = FullyConnected(
∑

v ,t SOFTMAX(Wth
t
v ))
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Latent Molecular Optimization for Targeted Therapeutic
Design [Aumentado-Armstrong, 2018]

Problem: given a target find the drug (compound) most likely to
bind and have desired properties.
Brute force: Try all compounds for a target: → 1024 possible
compounds [Ertl, 2003].
Idea: Use GCNs to encode target and ligand structure and predict
compounds with desirable properties.
Related approach [Mallet et al., 2019]
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Pipeline

Training input: protein(GP)/ligand (SC )complex

P is a vector embedding of a protein graph using fG which is a GCN

C is an embedding of the compound using string encoder fJ

Given P we predict a compound Ĉ (P)

Given P and C we predict B̂(C ,P) binding strength

Given C we predict L̂(C ) toxicity, and drug-likeness φ̂(C )
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Binding Site Representation

Nodes are atoms, edges are inter-atomic interactions weighted by
distance

Compute hidden states for each node in matrix.

h
(0)
v is vector of node features.

Message function: Mt(h
t
v , h

t
w ) = (deg(v)deg(w))−

1
2Avw

Update function: Ut(h
t
v ,m

t+1
v ) = ReLU(W tmt+1

v )

Readout: R = FullyConnected(
∑

v ,t SOFTMAX(W̃th
t
v ))

The result is a vector representation of the protein
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Affinity Prediction

Use DrugScoreX (DSX) scoring function to ‘label’ Protein-Ligand
Complexes (PLCs) with a binding strength.

Predict the strenth of binding and the probability of binding from C

Not shown: they are also able to predict toxicity and synthetic
accessibility.
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Latent Space Optimization

Once the model is trained, we can explore the latent space to improve
the predicted compound directly C = fS(P).
For a fixed target protein P, and variable compound C we define an
energy function EP .

EP(C ) = EB(C ,P) + EP(C ) (7)

The energy function is a tradeoff between binding strength EB(C ,P)
and desired chemical properties EP(C )
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Optimization Results

Figure: Improvement of compound after optimization process.
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Optimization Results

Figure: Left: predicted compound C = fs(P), middle: optimized compound, right:
true ligand. Bottom: DSX scores from docking optimized vs random compounds.
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Summary

1 Graphs are very useful in biology

2 Kernel methods were first attempt at learning on graphs but require
manual construction which can lead to bias.

3 Continuous representations are improving and they allow for very
efficient explorations of structured spaces.
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Further Reading

GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural
Networks [Ying et al., 2019]

How powerful are Graph Neural Networks [Xu et al., 2018]

Inductive representation learning on large graphs
[Hamilton et al., 2017a]

DEFactor: Differentiable Edge Factorization-based Probabilistic
Graph Generation. [Assouel et al., 2018]
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