Learning on Graphs for Biological Problems

Carlos G.Oliver

ML Reading Group

July 4, 2019

@ Why Are Graphs Interesting?
© Pre-neural net models

© Graph Convolutional Networks
@ Drug Design with GCNs

Graphs in [Bio/chem]informatics

@ Many ‘biological’ objects are naturally structured.

ENSG00000237495

0237431

Bacteria Archaea Eukaryota

A
protein secondary sequence structure
data structure elements

Using graphs in ML models

@ Representation Problem
e Standard predictors require fixed-size vectors as input (i.e. feature
vectors)
e Graphs (or subgraphs) are variable in size
e We often lack a notion of explicit ‘features’ that captures structure

@ Solutions

e Implicit — Graph Kernels
o Explicit — Dissimilarity Embedding
o Learned — Graph Convolutional Networks

Graph Kernels

@ Kernel-based predictors work without explicit feature maps.

@ Instead of explicitly defining features, we define a similarity (kernel)
function over graphs [Vishwanathan et al., 2010]

k(G,G') = (¢(G), ¢(G")) (1)

@ All requirements of kernels apply

Neighbourhood Overlap

e Compare neighbourhoods between nodes [Heyne et al., 2012]
@ Used to identify clusters of sub-structures in RNA 2D structures.

@ Decomposition Kernels: graph kernel k function of kernel x on
sub-graphs.

@ r checks isomorphism between pairs of subgraphs in G and G’, k
aggregates.

krd(G,G) =Y 1(A= A)I(B=B')

K(G,G)=> > r4(GG) |
r d

Dissimilarity Embedding

@ A graph is represented by its distance to a fixed set of graphs
[Riesen and Bunke, 2010]

@ Given a graph distance function d and a fixed set of data points P,
we get a vector representation ¢(g) € RIPl of g as ¢(g); = d(g, P))

Pocket Space Ligand Space
0O Graph Embedding
Opl d(g 7p1) O O
3 d(g,p2)

d(g;pc) \Oy

C e
© i v
D2 A O o O
O : O o
(")P3

Graph Convolutional Networks (GCN)

Goal: a vector representation of nodes and graphs.
o Idea: let the input graph(s) define the neural network architecture.
@ The representation of a node depends on the representations of its
neighbors.
@ 'Convolutonal’ because we apply the same transformation to all
neighbourhoods followed by pooling.

®
TARGET NODE -
_ Va ® - AGGREGATE [+ @<Jf5
O,
) S,

INPUT GRAPH

Figure: Schematic of neighbourhood aggregation.[Hamilton et al., 2017b]

/28

Interesting biological applications

@ Convolutional networks on graphs for learning molecular fingerprints
[Duvenaud et al., 2015]

@ Towards gene expression convolutions using gene interaction graphs.
[Dutil et al., 2018]

@ Protein interface prediction using graph convolutional networks
[Fout et al., 2017]

Graph L Graph
Convolution Convolution Merge
Residue Residue Pair
'\ Representation Ropresentation
e
o

Ligand Protein
Graph

]
| Graph J Graph | :
Convolution Convolution

Receptor Protein
Graph

_ ~ Fully- Classification
i Connected

Figure: GCN model from [Fout et al., 2017] for predicting interface residues in
PPIs. 0/28

Message Passing Framework

Gilmer et.al. [Gilmer et al., 2017] define a general framework for
describing the many proposed architectures.

Node information — message

Transform messages from neighbors to compute hidden
representation.

Use hidden representations to make predictions.

Two phases: (1) Message Passing, (2) Readout

10/28

Message Passing (1)

e Att=0 ml=x, forallveG
@ Sum over function M; applied to each neighbor and self.

o Compute message m;1

t+1 Z Mf(hvv w7eVW) (4)

weN(v)

11/28

Message Passing (2)

@ Once we have our aggregated messages, we can apply U; to get
hidden states.

hytt = Ue(h, m™) (5)

@ U; takes message and current hidden state and transforms to obtain
hidden state at next layer.

@ At ever t messages from neighbours at 1 more 'hop’ are incorporated.

12/28

Finally, we get a graph representation.

y=R({h]|v e G}) (6)
R operates on all nodes to produce final representation y

e.g. R is the average over all h,

Since My, U;, R are differentiable losses can be backpropagated.

Can optionally train directly on h, for node-level tasks.

13/28

Example: Molecular Fingerprints [Duvenaud et al., 20

@ Fingerprints are fixed-size vector representations of chemicals.
@ GCNs ‘invented' to produce smooth/continuous distribution of
fingerprints.

Algorithm 2 Neural graph fingerprints
1: Input: molecule, radius R, hidden weights

H}...H}, output weights W1 ... Wg
2: Initialize: fingerprint vector f < Og
3: for each atom ¢ in molecule
b 4 1y 4+ gla) > lookup atom features

5: for L=1t0o R > for each layer
6: for each atom a in molecule

7: ry...ry = neighbors(a)

8: VT, T > sum
9: r, + o(vH})) > smooth function
10: i + softmax(r, W) > sparsify
11: fef+i > add to fingerprint

12: Return: real-valued vector f

o M, = CONCAT (hy, hw, €)
o U; = o(H;mitt)
o R = FullyConnected(3_, , SOFTMAX(W;h}))

Latent Molecular Optimization for Targeted Therapeutic

Design [Aumentado-Armstrong, 2018]

@ Problem: given a target find the drug (compound) most likely to
bind and have desired properties.

@ Brute force: Try all compounds for a target: — 1
compounds [Ertl, 2003].

@ Idea: Use GCNs to encode target and ligand structure and predict
compounds with desirable properties.

o Related approach [Mallet et al., 2019]

0%* possible

15/28

e Training input: protein(Gp)/ligand (Sc)complex
@ P is a vector embedding of a protein graph using fg which is a GCN

e C is an embedding of the compound using string encoder f;

Given P we predict a compound C(P)
Given P and C we predict B(C, P) binding strength
e Given C we predict L(C) toxicity, and drug-likeness ¢(C)

16/28

Binding Site Representation

@ Nodes are atoms, edges are inter-atomic interactions weighted by
distance

@ Compute hidden states for each node in matrix.

° h‘(,o) is vector of node features.

e Message function: M;(h%, ht) = (deg(v)deg(w))_%AVW
e Update function: U;(ht, mtt1l) = ReLU(W!mit?)

@ Readout: R = FullyConnected(}_, , SOFTMAX(Wth‘E))
@ The result is a vector representation of the protein

17/28

Affinity Prediction

@ Use DrugScoreX (DSX) scoring function to ‘label’ Protein-Ligand
Complexes (PLCs) with a binding strength.

@ Predict the strenth of binding and the probability of binding from C

1.0
- — Positi —— Positive

. g L 7 | =

[al 5] —— True distribution o

- =0.5 g

@ . g g

& & i

3.0 2.0 1.0 00 994p 2.0 00 %% 025 05 075 1.0
True DSX DSX Value Predicted Probabilities

@ Not shown: they are also able to predict toxicity and synthetic
accessibility.

18/28

Latent Space Optimization

@ Once the model is trained, we can explore the latent space to improve
the predicted compound directly C = fs(P).

@ For a fixed target protein P, and variable compound C we define an
energy function Ep.

&p(C) = Eg(C, P) + Ep(C) (7)

@ The energy function is a tradeoff between binding strength Eg(C, P)
and desired chemical properties Ep(C)

Algorithm 1 Molecular Optimization

1: procedure LATENTOPT(P, T, 1)
Co = fs(P)

3 fort =1to T do

4 v VSP(Ct,]_)

5: Cg — ADAM(Ct_l,n,'U)
6: end for
7

8:

Vir }—» VER(C) \

return Cr
end procedure

t>0

19/28

Optimization Results

LogP

£0.9

'S

-g 0.6

S0.3
0.0

1.0 g
E-l.o
-2.0
2-3.
0.0 1.0 2.0 0.0
Time Steps
3.0
20.7
75}
(o4
2.0] | 0.6
0.0 1.0 2.0 0.0
Time Steps

1.0
Time Steps

1.0
Time Steps

N
o

2.0

0.0

5.0
24.0

w
3.0
0.0

1.0
Time Steps

1.0

Time Steps

Figure: Improvement of compound after optimization process.

2.0

2.0

20/28

%@ 0 | B Bl | DO
<R | CRQR | <0

% b B | otog

Al
g g —— Subset
— L 0.5

g 0.5 atentOpt g
o o
o o
w w

0.0 —200 0 00100 0 100

DSX Value Difference

Figure: Left: predicted compound C = f(P), middle: optimized compound, right:
true ligand. Bottom: DSX scores from docking optimized vs random compounds.

21/28

© Graphs are very useful in biology

@ Kernel methods were first attempt at learning on graphs but require
manual construction which can lead to bias.

© Continuous representations are improving and they allow for very
efficient explorations of structured spaces.

22/28

Further Reading

@ GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural
Networks [Ying et al., 2019]

e How powerful are Graph Neural Networks [Xu et al., 2018]

@ Inductive representation learning on large graphs
[Hamilton et al., 2017a]

@ DEFactor: Differentiable Edge Factorization-based Probabilistic
Graph Generation. [Assouel et al., 2018]

23/28

References |

ﬁ Assouel, R., Ahmed, M., Segler, M. H., Saffari, A., and Bengio, Y.
(2018).
Defactor: Differentiable edge factorization-based probabilistic graph
generation.
arXiv preprint arXiv:1811.09766.

[§ Aumentado-Armstrong, T. (2018).
Latent molecular optimization for targeted therapeutic design.
arXiv preprint arXiv:1809.02032.

ﬁ Dutil, F., Cohen, J. P., Weiss, M., Derevyanko, G., and Bengio, Y.
(2018).
Towards gene expression convolutions using gene interaction graphs.
arXiv preprint arXiv:1806.06975.

24 /28

References |l

ﬁ Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R.,
Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. (2015).
Convolutional networks on graphs for learning molecular fingerprints.
In Advances in neural information processing systems, pages
2224-2232.

[Ertl, P. (2003).
Cheminformatics analysis of organic substituents: identification of the
most common substituents, calculation of substituent properties, and
automatic identification of drug-like bioisosteric groups.
Journal of chemical information and computer sciences,
43(2):374-380.

[@ Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. (2017).
Protein interface prediction using graph convolutional networks.

In Advances in Neural Information Processing Systems, pages
6530-65309.

25 /28

References 1|

ﬁ Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E.
(2017).
Neural message passing for quantum chemistry.
In Proceedings of the 34th International Conference on Machine
Learning-Voolume 70, pages 1263-1272. JMLR. org.

[@ Hamilton, W., Ying, Z., and Leskovec, J. (2017a).
Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pages
1024-1034.

[3 Hamilton, W. L., Ying, R., and Leskovec, J. (2017b).
Representation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584.

26 /28

References IV

B Heyne, S., Costa, F., Rose, D., and Backofen, R. (2012).
Graphclust: alignment-free structural clustering of local rna secondary
structures.
Bioinformatics, 28(12):1224-i232.

[3 Mallet, V., Oliver, C. G., Moitessier, N., and Waldispuhl, J. (2019).
Leveraging binding-site structure for drug discovery with point-cloud
methods.
arXiv preprint arXiv:1905.12033.

[§ Riesen, K. and Bunke, H. (2010).
Graph classification and clustering based on vector space embedding.
World Scientific.

27/28

ﬁ Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and
Borgwardt, K. M. (2010).
Graph kernels.
Journal of Machine Learning Research, 11(Apr):1201-1242.

[§ Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018).
How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826.

[@ Ying, R., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019).
Gnn explainer: A tool for post-hoc explanation of graph neural
networks.
arXiv preprint arXiv:1903.03894.

28/28

	Why Are Graphs Interesting?
	Pre-neural net models
	Graph Convolutional Networks
	Drug Design with GCNs

